Part Number Hot Search : 
S0100 EMK31 16101BAN M7010R R3010 IR21531D 020103 6R7FKR36
Product Description
Full Text Search
 

To Download IRF8113TRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 6/30/05 irf8113 hexfet   power mosfet notes   through  are on page 10 benefits  very low r ds(on) at 4.5v v gs  low gate charge  fully characterized avalanche voltage and current  100% tested for r g applications  synchronous mosfet for notebook processor power  synchronous rectifier mosfet for isolated dc-dc converters in networking systems top view 8 1 2 3 4 5 6 7 d d d d g s a s s a so-8 absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v i d @ t a = 70c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t a = 25c power dissipation  w p d @t a = 70c power dissipation  linear derating factor w/c t j operating junction and c t stg storage temperature range thermal resistance parameter typ. max. units r jl junction-to-drain lead  ??? 20 c/w r ja junction-to-ambient  ??? 50 max. 17.2 13.8 135 20 30 -55 to + 150 2.5 0.02 1.6 v dss r ds(on) max qg typ. 30v 5.6m  @v gs = 10v 24nc 

 2 www.irf.com static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 0.024 ??? v/c r ds(on) static drain-to-source on-resistance ??? 4.7 5.6 m ? ??? 5.8 6.8 v gs(th) gate threshold voltage 1.5 ??? 2.2 v ? v gs(th) gate threshold voltage coefficient ??? - 5.4 ??? mv/c i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 73 ??? ??? s q g total gate charge ??? 24 36 q gs1 pre-vth gate-to-source charge ??? 6.2 ??? q gs2 post-vth gate-to-source charge ??? 2.0 ??? nc q gd gate-to-drain charge ??? 8.5 ??? q godr gate charge overdrive ??? 7.3 ??? see fig. 16 q sw switch charge (q gs2 + q gd ) ??? 10.5 ??? q oss output charge ??? 10 ??? nc r g gate resistance ??? 0.8 1.5 ? t d(on) turn-on delay time ??? 13 ??? t r rise time ??? 8.9 ??? t d(off) turn-off delay time ??? 17 ??? ns t f fall time ??? 3.5 ??? c iss input capacitance ??? 2910 ??? c oss output capacitance ??? 600 ??? pf c rss reverse transfer capacitance ??? 250 ??? avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current  a diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 3.1 (body diode) a i sm pulsed source current ??? ??? 135 (body diode)  v sd diode forward voltage ??? ??? 1.0 v t rr reverse recovery time ??? 34 51 ns q rr reverse recovery charge ??? 21 32 nc conditions max. 48 13.3 ? = 1.0mhz conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 17.2a  mosfet symbol v ds = 10v, v gs = 0v v dd = 15v, v gs = 4.5v  i d = 13.3a v ds = 15v v gs = 20v v gs = -20v v ds = 24v, v gs = 0v t j = 25c, i f = 13.3a, v dd = 10v di/dt = 100a/s  t j = 25c, i s = 13.3a, v gs = 0v  showing the integral reverse p-n junction diode. v gs = 4.5v, i d = 13.8a  v gs = 4.5v typ. ??? v ds = v gs , i d = 250a clamped inductive load v ds = 15v, i d = 13.3a v ds = 24v, v gs = 0v, t j = 125c ??? i d = 13.3a v gs = 0v v ds = 15v
 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 25c vgs top 10v 4.5v 3.7v 3.5v 3.3v 3.0v 2.7v bottom 2.5v 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 150c vgs top 10v 4.5v 3.7v 3.5v 3.3v 3.0v 2.7v bottom 2.5v 2.5 3.0 3.5 4.0 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 15v 20s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 16.6a v gs = 10v
 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0.2 0.4 0.6 0.8 1.0 1.2 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 0.1 1.0 10.0 100.0 1000.0 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 0 102030405060 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 13.3a
 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-ambient fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.924 0.000228 13.395 0.1728 22.046 1.5543 14.911 22.5 25 50 75 100 125 150 t j , junction temperature (c) 0 2 4 6 8 10 12 14 16 18 i d , d r a i n c u r r e n t ( a )
 6 www.irf.com d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 13. gate charge test circuit fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 12c. maximum avalanche energy vs. drain current r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 starting t j , junction temperature (c) 0 40 80 120 160 200 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 7.3a 8.2a bottom 13.3a fig 14a. switching time test circuit fig 14b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + -
 www.irf.com 7 fig 15.       for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     fig 16. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr
 8 www.irf.com control fet  

   

     
 
   
 
 
         
   
   
 
  !"  
 #
 $  
 %& !" 

  
    #  
  


       
 
  
    #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? "     (
  

          
  %& !" 
  
      


  
   

     %& !" 
  
 "   
   
 
 
    

  
              )    

  


  #
 
  






   
      


   

* 

 

   
   
   % +      
 
    
         
  


 

 
 

  
 %& !"   # 
    #  ,         #
    
 
  
  
-   . 
 /         
 #
   #  
  
 synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets? susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be- tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca- pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic
 www.irf.com 9 so-8 package details so-8 part marking e1 d e y b a a1 h k l .189 .1497 0 .013 .050 bas ic .0532 .0040 .2284 .0099 .016 .1968 .1574 8 .020 .0688 .0098 .2440 .0196 .050 4.80 3.80 0.33 1.35 0.10 5.80 0.25 0.40 0 1.27 bas ic 5.00 4.00 0.51 1.75 0.25 6.20 0.50 1.27 mi n max mi l l i me t e r s inches mi n max dim 8 e c .0075 .0098 0.19 0.25 .025 bas ic 0.635 bas ic 87 5 65 d b e a e 6x h 0.25 [.010] a 6 7 k x 45 8x l 8x c y 0.25 [.010] c a b e1 a a1 8x b c 0.10 [.004] 4 3 12 footprint 8x 0.72 [.028] 6.46 [.255] 3x 1.27 [.050] 4. ou t l i ne conf or ms t o j e de c ou t l i ne ms - 012aa. not e s : 1. dimens ioning & t ole rancing per as me y14.5m-1994. 2. cont rolling dime ns ion: millime t e r 3. dime ns ions are s hown in millime t e rs [inche s ]. 5 dime ns ion doe s not include mold prot rus ions . 6 dime ns ion doe s not include mold prot rus ions . mold prot rus ions not t o exceed 0.25 [.010]. 7 dime ns ion is t he le ngt h of le ad f or s olde ring t o a s ubs t rat e. mold prot rus ions not t o exceed 0.15 [.006]. 8x 1.78 [.070] dat e code (yww) xxxx international rectifier logo f7101 y = last digit of the year part number lot code ww = we e k example: this is an irf7101 (mosfet) p = designates lead-free product (opt ional) a = as s e mb l y s i t e code
 10 www.irf.com 
  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 0.54mh r g = 25 ? , i as = 13.3a.  pulse width 400s; duty cycle 2%.  when mounted on 1 inch square copper board   
   & 
  data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 6/05 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) notes: 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters(inches). 3. outline conforms to eia-481 & eia-541. so-8 tape and reel


▲Up To Search▲   

 
Price & Availability of IRF8113TRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X